

Università di Camerino Scuola di Scienze e Tecnologie SEZIONE **MATEMATICA**

European Research Council

Stable and Chaotic Motions in the Planetary Problem (StableChaoticPlanetM)

Gruppo Nazionale

per il Calcolo Scientifico

Università degli Studi di Padova

Think tank on Scientific Computing and funding opportunities Camerino 18-19 June 2021

The LANDSLIDE project: the assessment of hydrogeological risk

Pierluigi Maponi

Team: Nadaniela Egidi, Lorenza Spadoni, Eleonora Gioia, Eleonora Paris, Piero Farabollini

European Commission, DG ECHO Period: 1 gennaio 2015 – 31 dicembre 2016 Total budget: 574.939,97 €

Project consortium

- University of Camerino, Italy (coordinator)
- IICT, Bulgarian Academy of Sciences, Bulgaria
- National Observatory of Athens Institute of Geodynamics, Greece
- Marche Region, Italy Test area 1
- Regional Government Smolyan, Bulgaria Test area 2
- Bielsko-Biala District, Poland Test area 3
- Region of Peloponnese, Greece (lettera di supporto) Test area 4

Project objectives

- To develop an assessment model for the landslide hazard from weather events and to implement this model in a web-based tool to compute the daily hazard level.
- To test and validate the model and the computational tool in operational environment.
- To involve the civil protection system and other institutions that are responsible for the hydrogeological risk management.
- To involve the population exposed to hydrogeological events in information events on prevention and self-protection measures.

General scheme of the information system

Mathematical models involved in the system

- Water movement in the soil (porous medium): *Richards equation*, that is a physical model easily adaptable to different geographical areas.
- Slope stability (safety factor):
 - *Infinite slope model* for the analysis of large geographical areas,
 - *3D-column model* for the analysis of limited geographical areas with critical situations.
- Time-series analysis of the short-term risk indices to compute long-term risk indices (susceptibility index + weather impact).

Water movement in the soil

The three dimensional subsurface flow of saturated and unsaturated porous medium can be described by Richards equation:

$$\left(C(\psi) + S_s \ \frac{\theta(\psi)}{n_{\varepsilon}}\right)\frac{\partial h}{\partial t} = \frac{\partial h}{\partial x}\left(K(\psi)\frac{\partial h}{\partial x}\right) + \frac{\partial h}{\partial y}\left(K(\psi)\frac{\partial h}{\partial y}\right) + \frac{\partial h}{\partial z}\left(K(\psi)\frac{\partial h}{\partial z}\right) + W$$

where:

 $h = \psi + z$ (where z is the elevation) is the hydraulic head,

 ψ is the pressure head,

 $C(\psi)$ is the specific capillary capacity,

 S_s is the storage coefficient,

 n_{ε} is the porosity,

W is the recharge term

 $K(\psi)$ is the hydraulic conductivity,

 $\theta(\psi)$ is the volumetric moisture content,

Remark: the functions $\theta(\psi)$ and $K(\psi)$ are described by empirical formulas: the Van Genuchten model [van Genuchten, *Soil Science Society of America Journal*, **44**(5) 892, 1980] is one of the most used in the numerical computations.

Remark: the initial and boundary conditions describe the initial distribution of the hydraulic head *h* inside the space domain and the interactions along the domain boundaries

Numerical approximation scheme

- Predictor-corrector iteration based on Euler and Crank-Nicolson schemes
- Parallel computing implementation

[Egidi et al., International Journal of Computer Mathematics, 97(1-2) 2, 2020].

Slope stability analysis

The shear strength *S* acting on the slip surface is compared with the shear strength S_f of the materials resisting along the slip surface. The fraction of these contrasting forces gives the factor of safety *FS*

$$FS = \frac{S_f}{S}$$

FS>1 indicates a stable slope, FS=1 indicates a state of limit equilibrium, while FS<1 indicates slope failure.

Mohr-Coulomb law:

 $S_f = c + \sigma \tan(\phi)$

c soil cohesion

 σ normal stress

 ϕ soil friction angle

Infinite slope model

$$FS = \frac{\tan(\phi)}{\tan(\alpha)} + \frac{c + \psi(d, t)\rho_w \tan(\phi)}{\rho_s dsin(\alpha)\cos(\alpha)}$$

 α slope angle

d depth

 ρ_s , ρ_w mass densities (soil and water)

3D-column model

Data

Maps (scale 1:10.000-1:5.000): topographic, geologic, geomorphological, lithotechnical, and geologic sections.

Land cover

Position of the weather stations

Landslide events (n.3-5) and relative weather (3 months before)

Direct measurements: core soil samples (depth 10-20m) for

- Water content (1 sample per meter)
- geotechnical analys of the soil (2 samples each drilling)

Test areas

Test area 1 – Province of Ancona, Italy: central part of the Esino basin (surface 11.69 km²)

Test area 2 – Region Smolyan, Bulgaria: between the town of Smolyan and Mountain Snejanka (surface 7.4 km²)

Test area 3 – District of Bielsko-Biala, Poland: within a former stone quarries in the municipality of Kozy, near the Mountain Small Beskidin (surface 14.7km²)

Test area 4 – Region Peloponnese, Grece: located at the morth-west of Peloponnese, 15 km away from Patras, near the road to Athens (surface 0.88km²)

Concluding remarks

The LANDSLIDE project gives a method for the landslide hazard assessment from weather conditions.

Further information: <u>www.landslideproject.eu</u>

Uncertainty level on the data and model sensibility analysis.

Possible developments:

- dynamics of the landslide mass
- hazard assessment of flood and forest fire,
- evaluation of measures for the hydrogeological risk reduction

<u>EU Funding & Tenders Portal - European Commission</u> \rightarrow <u>Union Civil</u> <u>Protection Mechanism (UCPM)</u>